Training
Description
Use the teklia-qwen train command to train a new Qwen model.
| Parameter | Description | Type | Default |
|---|---|---|---|
|
Path to the train set in JSONL format. |
|
|
|
Path to the validation set in JSONL format. |
|
|
|
Path to the model to fine-tune. |
|
|
|
Path to the training configuration. More below. |
|
|
|
Path to the model to resume from. |
|
|
Training configuration
A sample configuration file is available at qwen/train/config.yaml. Each parameter is described over there.
The first block must be updated for each training:
output_dir: "output" # Directory to save the model
num_train_epochs: 10 # Number of training epochs
per_device_train_batch_size: 4 # Batch size for training
per_device_eval_batch_size: 4 # Batch size for evaluation
report_to: "wandb" # Reporting tool for tracking metrics
max_length: null # Do not truncate input tokens (default: 1024)
run_name: "QWEN Fine-tuning" # Set custom run name for wandb
Other parameters should generally remain unchanged and only be modified with caution.
Examples
Train a model
-
Command to use:
WANDB_MODE=offline teklia-qwen train --train-dataset train.jsonl \ --val-dataset val.jsonl \ --model /models/QWEN/Qwen3-VL-8B-Instruct/ \ --config experiment.yaml -
Output: All checkpoints will be saved in
config.output_dir -
Synchronize with Weights & Biases
wandb sync wandb/offline-run-yyyymmdd_hhmmss-runid/
Resume training
You can also resume a training with --resume-from-ckpt.
-
Command to use:
WANDB_MODE=offline teklia-qwen train --train-dataset train.jsonl \ --val-dataset val.jsonl \ --model /models/QWEN/Qwen3-VL-8B-Instruct/ \ --config experiment.yaml \ --resume-from-ckpt output/checkpoint-5/ -
Output: This will:
-
shuffle the dataset with a new data seed,
-
resume the trainer state,
-
resume the wandb run.
-